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This paper addresses the problem of asymmetry of the First-order Reversal Curve (FORC) diagram in correlation with the 
symmetry of the Preisach distribution. Only in a few cases, for the exchange-bias materials for example, an asymmetric 
distribution in the demagnetized state has to be considered in the Preisach model. In relation to the case of exchange bias 
materials a correlation between the distribution of interactions and that of the coercivities was considered. The FORCs 
starting on the ascending and descendent branches of the major loop are calculated with a Moving Preisach Model. The 
results show a good resemblance with typical experimental results on exchange bias materials. 
 
(Received November 12, 2009; accepted March 12, 2010) 
 
Keywords: Hysteresis, Magnetic materials, FORC diagram, asymmetric Preisach model 
 
 
 

1. Introduction 
 
The first order reversal curve (FORC) method initially 

designed as an identification technique for the Classical 
Preisach Model (CPM) [1] is now in many laboratories 
used as a general experimental procedure which gives a 
diagram describing essentially the distribution of 
coercivities and interaction fields for a system [2, 3]. 
However, even if initially the method was seen as a more 
general approach than the Preisach model, the FORC 
diagram method and the results obtained with it can be 
understood within the Preisach paradigm. A fundamental 
feature which can be observed on most experimental 
FORC diagrams is that they are essentially asymmetric. 
This could appear strange due to the fact that the hysteresis 
loop and even the FORCs usually show a high degree of 
symmetry. As a natural consequence, it is of paramount 
importance to understand correctly this attribute in order to 
properly make use of the experimental FORC diagram 
results. In this paper we shall make this analysis with the 
help of a number of Preisach models. 

 
 
2. FORC distribution and the classical  
    Preisach model 
 
The fundamental brick of the Classical Preisach 

Model is the elementary rectangular hysteresis loop, which 
is usually called hysteron or Preisach hysteron or even 
rectangular hysteron. From the physical point of view, this 
could be associated in our mind with the hysteresis loop of 
a uniaxial single domain particle when the field is applied 
along the easy axis. However, the Preisach system is not a 
simple superposition of Stoner-Wohlfarth hysterons 
which, regardless of their anisotropy, have a symmetry [2, 
3] with respect to the ( ),H m  coordinate system, where 

H  is the applied field and m  is the magnetic moment. 
The main ingredient of the CPM is the distribution of 
interaction fields in the system, which has the effect of 
shifting the rectangular hysteresis loop with a value equal 
to the interaction field. Therefore, the classical Preisach 
system is a distribution of symmetric and asymmetric 
hysterons. Each sample will be represented by such a 
distribution, called Preisach distribution and, 
consequently, the main problem of the model is to find this 
distribution from experimental data. 

Mayergoyz [1] has designed an elegant experimental 
procedure, based on the measurement of a set of first-order 
reversal curves, which allows acquiring the Preisach 
distribution for a CPM system (a system which obeys to 
the congruency and wiping-out properties [1]). As most of 
the real systems are not CPM systems, the FORC-based 
identification method will fail. However, Pike and co-
workers have proposed that the identification method 
should be used for any system as a purely experimental 
procedure [4]. The FORC method is using a set of 
typically 100 first-order reversal curves starting on the 
descendent or the ascendant branches of the Major 
Hysteresis Loop (MHL). The magnetic moment on a 
FORC is a function of two variables: the applied field, H  
, and the reversal field at the starting point on the FORC, 

rH , that is, ( ),FORC rm H H± , where the " "+  if for the 
FORCs starting on the ascending branch of MHL and " "−  
is for ones starting on the descendent branch of MHL. The 
FORC distribution, noted with ( ), rH Hρ , is given by the 
second order mixed derivative of the moment measured on 
the FORC: 
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where the factor ( )1 2  is assuring that for the CPM 
systems the FORC distribution is identical to the Preisach 
distribution regardless on the use of ascendant or 
descendent branches of MHL. With the standard Preisach 
notation, H Hα=  is the superior switching field of the 
hysteron and rH Hβ=  is the inferior switching field of 

the hysteron and the Preisach distribution, ( ),P H Hα β  is 

identical to the FORC distribution ( ), rH Hρ  for CPM 
systems. 
 

3. Symmetry of magnetization curves and the  
    FORC diagrams 
 
In most of the classical magnetic materials one 

expects to measure a major loop which is symmetrical 
with respect to the origin of the coordinate system ( ),H m . 

 
  

 

 
 
 

 
 

Fig. 1. (a) - symmetrical branches of the major hysteresis 
loop and (b) - symmetrical first-order reversal curves. 

 
 
 

Also the first-order reversal curves from the 
descendent branch of the major loop are usually 
symmetrical with the corresponding first-order curve 
starting on the ascending branch of the MHL (see Fig. 1). 

The symmetry of the major loop is usually taken as 
motivation for a symmetric Preisach distribution in the 
classical Preisach model with respect to the second 
bisector of the Preisach plane, that is the axis of zero 
interaction field. We have to emphasize that both the 
symmetry of the major loop and of ascending and 
descending FORCs are only compatible in CPM with a 
symmetric Preisach distribution. Any asymmetry of the 
Preisach distribution will induce an asymmetric major 
loop. However, the FORC procedures will produce 
regardless on the branch they are measured the same 
FORC distribution, identical to the Preisach distribution 
for CPM systems. 

When the FORC experiment is performed on non-
CPM systems, the most frequent case is when the major 
loop and the FORCs show the symmetry mentioned 
previously but the FORC distribution (and the FORC 
diagram which is the contour map of the FORC 
distribution) is not symmetric with respect to the “no-
interactions” axis (see Fig. 2). However, the ascending and 
descending FORC distributions are symmetrical to each-
other. A simple explanation can be given to this case if we 
consider a mean field interaction field in the Classical 
Preisach Model. One obtains the well-known Moving 
Preisach model [6] which can reproduce easily such a 
case. This asymmetry can be used to evaluate the intensity 
of the mean field term (the moving parameter) [7] and 
statistical procedures can be implemented [8] to evaluate 
quantitatively the asymmetry of the experimental FORC 
diagram.  

This procedure proved to be extremely efficient in the 
case of patterned media [8, 9]. More sophisticated Preisach 
models, like the Variable Variance model [10], or PM2 
[11, 12] can also reproduce this case with a fundamental 
distribution of interaction fields which becomes 
asymmetric as a function of the system output (the 
magnetic moment of the sample). For a limited number of 
materials however, the two FORC diagrams that can be 
measured from the same hysteresis loop, using either the 
ascending or the descending branch, are not symmetric 
between them (measurements made on exchange bias 
materials [13]). This case can’t be reproduced by the 
Moving model if the Preisach distribution in the 
demagnetized state (unaffected by the mean field) is 
symmetric. The other models mentioned before are also 
failing to address this problem. In this case we have to use 
asymmetric Preisach distributions even in the 
demagnetized state. 
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Fig. 2. FORC diagrams measured for a standard 
magnetic tape (top); simulated FORC diagrams using a 
Moving Preisach Model (bottom). The diagrams are 
asymmetrical with respect to the H1 = 0 axis  but  FORC-  
        and FORC+ are symmetrical with each other. 

 
 

4. Preisach model with asymmetric Preisach  
distribution 
 
In order to propose an asymmetric Preisach 

distribution for the mentioned systems we started from the 
observation that the FORC distribution measured on the 
descending branch on the major loop show in many cases 
a tail which at higher fields becomes almost parallel to the 
reversal field axis (or the down switching field in Preisach 
terminology) [14] (Fig. 3). Similar diagrams are obtained 
in ferroelectric systems [15]. This kind of behavior 
suggests that the shift of the hysteron (the exchange field) 
is higher for higher coercivities. To take that into account 
we have considered the following Preisach distribution: 
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with ( )0i c sh C h hγ= + , where C  and γ  are the 
parameters controlling the correlation degree and sh  is the 
shift of the interaction distribution. The coercitivities are 
distributed lognormal with average 0

ch  and standard 
deviation 

chσ   while the interactions follow a Gaussian-

type distribution with the average 0ih  and standard 
deviation 

ihσ . 

 

 

 
Fig. 3. FORCs and FORC diagram of IrMn10-Co5 exchange bias bilayer measured on both branches of MHL. 
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If we use a classical Preisach model with this 

distribution, we obtain from both FORC diagrams 
(ascending and descending) the same asymmetric 
distribution. However, when we use the mean field term 
the FORC distributions become different and they did not 
show any type of symmetry between them. What is really 

remarkable is that the mean field term could have such an 
effect on the asymmetric Preisach distribution that on the 
ascending branch FORC distribution the correlation we 
took into account between the exchange field and 
coercivity is much less visible, which was observed on 
some exchange bias thin film samples (Fig. 4).  

 

 
 

Fig. 4. FORC distributions obtained from a moving Preisach model which uses the asymmetrical distribution from  Eq.  2  with  
0sh =   (top)  and  8sh = −  (bottom). 

 
5. Conclusions 
 
The symmetry of the experimental FORC 

distribution/diagram contains essential information about 
the magnetic system measured. An asymmetry of the 
FORC diagram correlated with a symmetric major loop is 
the indication of a state dependent interaction field 
distribution. A mean field term with a symmetric Preisach 
distribution could reproduce easily this type of diagrams. 
However, this model (moving Preisach) when applied to 
simulate both ascending and descending FORCs, produces 
diagrams which are symmetric to each other. When the 
experimental ascending and descending FORC 
distributions are not symmetric between them, like in the 
case of exchange bias materials, a non-symmetric Preisach 
distribution has to be considered. This result shows that 
the asymmetric major loop is not necessarily caused by 
different type of magnetization processes, as it has been 
attributed in some exchange biased systems. 
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